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Società Italiana di Fisica
Springer-Verlag 1999

Molecular-dynamics simulation of a glassy polymer melt:
Incoherent scattering function

C. Bennemann, J. Baschnagela, and W. Paul

Institut für Physik, Johannes-Gutenberg Universität, Staudinger Weg 7, 55099 Mainz, Germany

Received 30 October 1998

Abstract. We present simulation results for a model polymer melt, consisting of short, nonentangled chains,
in the supercooled state. The analysis focuses on the monomer dynamics, which is monitored by the
incoherent intermediate scattering function. The scattering function is recorded over six decades in time
and for many different wave-vectors which range from the size of a chain to about three times the maximum
position of the static structure factor. The lowest temperatures studied are slightly above Tc, the critical
temperature of mode-coupling theory (MCT), where Tc was determined from a quantitative analysis of the
β- and α-relaxations. We find evidence for the space-time factorization theorem in the β-relaxation regime,
and for the time-temperature superposition principle in the α-regime, if the temperature is not too close
to Tc. The wave-vector (q-) dependence of the nonergodicity parameter, of the critical amplitude, and the
α-relaxation time are in qualitative agreement with calculations for hard spheres. For q larger than the
maximum of the structure factor the α-relaxation time τq already agrees fairly well with the asymptotic
MCT-prediction τq ∼ q−1/b. The behavior of the relaxation time at small q can be rationalized by the
validity of the Gaussian approximation and the value of the Kohlrausch stretching exponent, as suggested
in neutron-scattering experiments.

PACS. 61.20.Ja Computer simulation of liquid structure – 64.70.Pf Glass transitions – 61.25.Hq Macro-
molecular and polymer solutions; polymer melts; swelling

1 Introduction

During the past decade, numerous experiments and sim-
ulations have focused attention on the dynamics of su-
percooled liquids in a temperature region about fifty de-
grees above the calorimetric glass transition [1–5]. This
interest has been elicited by the development of the so-
called mode-coupling theory (MCT) [5–7]. Mode-coupling
theory predicts that there is a critical temperature Tc

above Tg, where the dynamics of the glass former qual-
itatively changes from a liquid-like to a solid-like behav-
ior. The onset of this change is manifested by a two-step
decay of dynamic correlation functions, which couple to
density fluctuations. These correlation functions can be
measured in experiments and computer simulations. The
distinguishing feature of the theory is that it makes uni-
versal, system-independent predictions about the shape
of the time correlation functions, that there are constrain-
ing relationships between various theoretical quantities,
and that key, nonuniversal parameters can be expressed
in terms of the glass former’s static structure.

Especially the latter point opens the possibility of a
direct comparison between theory and experiment or sim-
ulation. Such comparisons are, however, predicated upon
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having accurate data for the temperature dependence of
the static structure factor at hand. Therefore, they have
only been performed for few, simple systems, such as hard-
sphere-like colloidal particles [8] or computer models of
soft spheres [9] and binary Lennard-Jones mixtures [10].

On the other hand, most tests of MCT have con-
centrated on the universal predictions by adjusting the
system-specific parameters. This fit procedure must si-
multaneously optimize at least three free parameters. It
is rather involved and further complicated by the fact
that the theoretical predictions are only valid asymptoti-
cally in a narrow temperature interval around Tc, and that
the microscopic (vibrational) time scales have to be well-
separated from those of the structural relaxation. These
drawbacks have led to a criticism of the significance of
the experimental evidence for the theory [11], but also to
extensions of MCT to tackle problems, like the interfer-
ence of vibrational and relaxational time scales [12], ori-
entational degrees of freedom [13], and corrections to the
asymptotic behavior [14,15]. This situation suggests that
further tests may be beneficial.

In the present paper we want to discuss the results
of a molecular-dynamics (MD) simulation for a polymer
melt and the analysis of the incoherent intermediate scat-
tering function by the idealized mode-coupling theory.
Comparable applications of the theory to polymer melts
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have already been performed in experiments and simula-
tions. One of the earliest applications were neutron scat-
tering experiments of polybutadiene [16]. These experi-
ments found the predicted square-root behavior for the
temperature dependence of the nonergodicity parameter
below Tc, suggested an in-phase variation of the coherent
α-relaxation time with the static structure factor, and pro-
vided evidence for time-temperature superposition above
Tc. These studies mainly focused on the α-relaxation. A
detailed line shape analysis in the β-relaxation regime
was not made. Such an analysis was attempted in di-
electric relaxation experiments of poly(ethylene tereph-
thalate) [17]. The experiments are complicated by the fact
that poly(ethylene terephthalate) has a high tendency to
crystallize, and that a β-peak masks the MCT β-process.
Nevertheless, the experiments confirmed some of the ide-
alized predictions, but also claimed that there are severe
deviations, especially below Tc. Close to and below Tc

deviations are expected due to ergodicity restoring pro-
cesses. Usually, the extended MCT [18] is then applied
to account for these processes. However, a recent reanaly-
sis [19] of the dielectric data indicates that the deviations
cannot be explained in this way. Instead, a higher order
scenario, an A3-singularity, has to be used. In applica-
tions to other structural glass formers these higher-order
singularities are less common, but some studies suggest
that they could be pertinent to partially crystalline poly-
mers [20,21].

On the simulation side, the glassy behavior of poly-
mer melts has been studied by Monte-Carlo simulations
of the bond-fluctuation lattice model [22–24]. These sim-
ulations deal with short, nonentangled chains, and have
been restricted to temperatures above Tc. A comparison
with MCT indicated that a quantitative description of the
β-relaxation is possible if the extended theory is used [25].
Despite this agreement, there are still some points which
could be improved upon. On the one hand, the simulations
were performed at constant volume, whereas experiments
are usually done at constant pressure, and the underly-
ing lattice structure precludes all phonon contributions to
the short-time dynamics. On the other hand, the simu-
lation data were not completely equilibrated. They still
exhibited very slow physical aging processes. These aging
processes effectively correspond to additional relaxation
channels which are not contained in the idealized MCT.
Although it is interesting that the extended MCT is able
to describe such a situation – especially when taking into
account the current intensive research on physical aging
below Tc [26,27] –, the simulations do not meet the theo-
retical premise of thermal equilibrium.

Both drawbacks are removed by the present MD-
simulation. It is done at constant pressure and equili-
brated on all length scales which we will discuss, i.e., at
low temperatures the simulation time spent for equilibra-
tion exceeded by one order of magnitude the time, over
which actual dynamical measurements were performed af-
ter equilibration. Some details of the model, of its static
properties, and of the simulation are compiled in the next
section. The subsequent section is split into two parts. The
first describes the analysis of the β-relaxation, and the sec-

ond that of the α-relaxation. The last section summarizes
the main results.

2 Model, static results, and simulation
technique

This section briefly reviews some characteristics of the
model. A detailed description of its properties and of the
simulation technique can be found in reference [28].

The simulations were done with linear, nonentangled,
monodisperse chains of length N = 10. All monomers
interact by a truncated and shifted Lennard-Jones (LJ)
potential, ULJ(r) = 4ε[(σ/r)12 − (σ/r)6] + C. The con-
stant C = 0.00775 assures that the potential vanishes if
r ≥ 2rmin = 2 × 21/6σ, where rmin is the minimum posi-
tion. Temperature and distances are measured in units of
ε/kB and σ, respectively, and time is measured in units of
(mσ2/ε)1/2, where the mass is set to unity.

In addition, there is a FENE (finitely extensible nonlin-
ear elastic) potential between bonded monomers along the
backbone of a chain, i.e., UF(r) = −15R2

0 ln[1− (r/R0)2]
with R0 = 1.5 [29]. This potential is harmonic for r → 0
and diverges logarithmically if r → R0. With the cho-
sen parameters the superposition of the FENE- and LJ-
potentials generates a steep effective bond-potential with
a minimum at about 0.96σ, which makes bond crossings
impossible.

In our study a melt configuration contained 120 poly-
mers, and ten configurations were simulated at each tem-
perature to improve the statistics. The simulation proce-
dure consisted of two steps. First, the volume was allowed
to fluctuate in a simulation at a given temperature and
pressure (always p = 1 – the influence of pressure is stud-
ied in Ref. [30]) to determine the equilibrium density at
this thermodynamic state point. Fixing then the resulting
volume the subsequent runs used the Nosé-Hoover ther-
mostat to simulate in the canonical ensemble. All dynamic
properties calculated are results from these canonical sim-
ulations. In order to equilibrate the system, each chain
was propagated several times over the distance of radius
of gyration before starting the analysis. This time suffices
so that the incoherent scattering functions have decayed
to zero for all wave-vectors (except for q < 2 at T = 0.46).

The particular choice of the bonded and nonbonded
potentials has two main consequences for the static prop-
erties of the model. First, the chains do not become
stiffer with decreasing temperature. In the interesting tem-
perature region (T < 0.7) the end-to-end distance, Re,
and the radius of gyration, Rg, are essentially constant:
R2

e = 12.3± 0.1, R2
g = 2.09± 0.01. Second, the monomer

distance 0.96, favored by the bond-potential, is incompat-
ible with multiples of rmin, and thus with crystalline or-
dering. This is illustrated by the static structure factor of
the melt in Figure 11. At small wave-vectors, the structure
factor is of the order of 0.01, indicating that the melt has

1 This figure extends the data of Figure 6 in reference [28].
Note that we chose the conventional normalization in the
present case contrary to reference [28]. In Figure 1, S(q)
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Fig. 1. Temperature dependence of the melt’s structure factor.
The temperatures span the interval from the normal liquid
(T = 1) to the supercooled state (T = 0.46) of the melt. The
lowest temperature is slightly above Tc ' 0.45. In the mode-
coupling analysis mostly q = 3, 6.9, 9.5 are used. The smallest
q-value probes the size of a chain (end-to-end distance: Re '
12.3, radius of gyration: Rg ' 2.09), whereas the larger wave-
vectors correspond to intermonomer distances.

a low compressibility, then it raises and exhibits an amor-
phous halo close to q = 6.9, corresponding to the nearest-
neighbor packing of the monomers, and finally decreases
again and begins oscillating to gradually approach 1 for
large q. This structure is characteristic of the liquid state
and present at all temperatures. With decreasing temper-
ature the maxima and minima become sharper, and the
position of the first maximum slightly shifts to larger q-
values because the density of the melt increases.

3 Idealized mode-coupling analysis

Close to the critical temperature mode-coupling theory
predicts a two-step relaxation behavior for dynamic cor-
relation functions that couple to density fluctuations, like
the incoherent intermediate scattering function,

φs
q(t) =

1

M

M∑
m=1

〈
exp

(
iq · [rm(t)− rm(0)]

)〉
, (1)

where M stands for the total number of monomers in the
melt. The expected two-step relaxation gradually develops
for T ≤ 0.55 in our model. Therefore the following analysis
focuses on this temperature region. It is divided into two
parts. First, we discuss the β-relaxation regime, and then
the final structural decay, the α-relaxation.

tends to the isothermal compressibility divided by that of
the ideal gas, i.e., to ρTκT, if q → 0, whereas it approaches
(ρTκT/total number of monomers) in reference [28].

3.1 β-relaxation regime

The β-relaxation regime is defined as the time window,
where the correlator φs

q(t) is close to the nonergodicity
parameter f sc

q , i.e., |φs
q(t) − f sc

q | � 1 [5–7,14,15]. The
corrections to f sc

q take the following form [14]

φs
q(t) = f sc

q + hs
qG(t) + hs(2)

q

[
t

τ

]2b

. (2)

The first two terms represent the space-time factorization
theorem. The spatial dependence is contained in f sc

q and
in the critical amplitude hs

q, whereas the β-correlator G(t)
carries the whole time and temperature dependence. In
the idealized MCT it is given by [6,14,15]

G(t) =
√
|ε|g(t/tε)

with tε =
t0

|ε|1/2a
, ε = C

[
Tc − T

Tc

]
, (3)

where t0 is a matching time to the microscopic tran-
sient, tε is the β-time scale, ε is the separation param-
eter (C = constant), and g(t̂) is the temperature inde-
pendent β master function. Its shape is determined by
the exponent parameter λ, which in turn fixes the crit-
ical exponent a and the von-Schweidler exponent b via
λ = Γ (1− a)2/Γ (1− 2a) = Γ (1 + b)2/Γ (1 + 2b).

The third term of equation (2) is a leading-order
correction (of order |ε|) to hs

qG(t) (which is of order

|ε|1/2) [14,15]. It extends the description of the decay from
f sc
q to longer times (i.e., for tε � t� τ it is a correction to

the von-Schweidler law tb), and depends on temperature
by the α-time scale τ

τ = tε

[
tε

t0

]a/b
=

t0

|ε|γ
for T ≥ Tc (4)

with γ = 1/(2a) + 1/(2b).
When applying these formulas to the simulation data

we proceeded in two steps. First, we tried to fix the expo-
nent parameter by working with the factorization theorem
only. To this end, we calculated the β-scaling function for
a specific value of λ numerically. The result was inserted
in equation (2), and the remaining parameter, f sc

q , tε, and

the total prefactor of g(t̂), h̃s
q(T ) = hs

q|ε|
1/2, were adjusted

at a given temperature and q-value. This procedure was re-
peated for different λ- and q-values (mainly q = 6.9, 9.5),
and at several temperatures (mainly T = 0.48, 0.52) to
explore which range of λ-values yielded fits of comparable
quality. The best-fit result was:

λ = 0.635± 0.025, a = 0.352± 0.010,

b = 0.75± 0.04, γ = 2.09± 0.07. (5)

In addition, this first step also helps to find the upper
bound of the temperature interval, where the asymptotic
formulas of MCT can be applied. For the model stud-
ied this is T ≈ 0.52. Therefore, the second step was re-
stricted to T ≤ 0.52. In this step, we fixed λ = 0.635
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Fig. 2. Incoherent intermediate scattering functions versus
time at T = 0.47 (symbols) and at T = 0.52 (lines). Three
q-values are shown: q = 3 (≈ size of the chain), q = 6.9 (≈
maximum of S(q)), and q = 9.5 (≈ first minimum of S(q)).

and optimized the remaining parameters, f sc
q , tε, h̃s

q,

and h̃
s(2)
q (T ) = h

s(2)
q τ−2b. This procedure was done for

T = 0.47, 0.48, 0.49, 0.5, 0.52, and at about 20 different
q-values, ranging from q = 1 to q = 19, for each tem-
perature.

The simulation results for T = 0.47 and T = 0.52
are compared in Figure 2. The figure shows the incoher-
ent intermediate scattering function over six decades in
time2 for three different wave vectors. The smallest q-
value (q = 3) probes the length scale of a chain, whereas
q = 6.9, 9.5 approximately correspond to the maximum
and the first minimum of the structure factor S(q) (see
Fig. 1). At a given q-value the simulation data almost co-
incide for both temperatures if t ≤ 10−1. This short-time
regime corresponds to the ballistic motion of a monomer,
which only shows a weak

√
T temperature dependence.

Contrary to that, the curves strongly separate from one
another with increasing time. At T = 0.47, φs

q(t) reaches
zero about a decade later than at T = 0.52. To achieve a
similar growth of the structural relaxation time when cool-
ing from higher temperature to T = 0.52, one has to take
T ≈ 0.7, a temperature that is 35% larger than T = 0.52.
Compared to this difference, the 10% disparity between
T = 0.47 and T = 0.52 is indicative of the approach to Tc,
where the asymptotic formulas, equations (2–4), should
hold.

Figures 3 and 4 show comparisons between the simu-
lation data and equation (2) for T = 0.47 and T = 0.52,
respectively. For both temperatures the description of
the data by the theory starts at about the same time,
t ≈ 0.6, (except at T = 0.52 and q = 3, where the
fits extends to t ≤ 10−1). This suggests that the scale
t0, which MCT introduces as a matching time of equa-
tion (2) to the transient microscopics close to Tc (i.e.,

2 Time is measured in units of the MD time step, which is
dt = 0.002 [28]. Six decades in time therefore correspond to
5× 106 MD steps.
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Fig. 3. Incoherent intermediate scattering function versus
time at T = 0.47. Three q-values are shown: q = 3 (≈ size
of the chain), q = 6.9 (≈ maximum of S(q)), and q = 9.5 (≈
first minimum of S(q)). The dashed lines are the MCT-fit re-
sults, using only the factorization theorem, whereas the solid
lines also include the corrections to the von-Schweidler law.
The dashed horizontal lines indicate the fit values for f sc

q at
the respective momentum transfers.
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Fig. 4. Incoherent intermediate scattering function versus
time at T = 0.52. Three q-values are shown: q = 3 (≈ size
of the chain), q = 6.9 (≈ maximum of S(q)), and q = 9.5 (≈
first minimum of S(q)). The dashed lines are the MCT-fit re-
sults, using only the factorization theorem, whereas the solid
lines also include the corrections to the von-Schweidler law.
The dashed horizontal lines indicate the fit values for f sc

q at
the respective wave-vectors.

t0 ≈ t0(Tc) = constant), is only weakly – if at all – tem-
perature dependent for our polymer model. The same con-
clusion could have also been drawn from Figure 2 because
the scattering functions, calculated at different tempera-
tures, coincide for small times (i.e., for t < 0.3). Whereas
the asymptotic result, t0 ≈ constant, appears to hold quite
generally in experiments and simulations of nonpolymeric
systems [2], a pronounced temperature dependence was
found in a Monte-Carlo simulation of the bond-fluctuation
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model [25]. Compared to the present study, this seems
to be a model-specific rather than a typical feature of
glass forming polymers, contrary to the conjecture of ref-
erence [25].

For t > 0.6, the idealized theory describes the decay of
the correlators over about 1.5 decades in time at T = 0.52
and over more than 2 decades at T = 0.47. Therefore the
β-window expands considerably in this narrow tempera-
ture interval. The extension of the window can also be in-
ferred from the shift of the time τco, where f sc

q crosses the
simulation data. For all q-values it increases from about
1.4 at T = 0.52 to about 10 at T = 0.47. The indepen-
dence of τco on q is an evidence of the factorization the-
orem which implies φs

q(τco) = f sc
q for all q, if G(τco) = 0.

As T → T+
c , one expects G(t) = 0 to occur close to the

β-relaxation time so that τco ∝ tε [15]. For T > Tc, tε
marks the crossover of the critical to the von-Schweidler
dynamics, where corrections are not dominant yet. This
can be seen in Figures 3 and 4. The idealized fits with
and without corrections coincide on the scale τco, but de-
viate at later times. Depending on q, corrections to the
von-Schweidler law extend the fits by about 0.25 decades
at T = 0.52 and by about 0.5 decades at T = 0.47.
For q = 3, they are negative, but positive for q = 9.5.
The change of sign occurs approximately around q = 6.9.
This behavior qualitatively agrees with theoretical calcu-
lations for hard spheres [14] and recent simulations for
linear molecules [31].

Despite this agreement, we want to mention a prob-
lem that we faced when applying the corrections. In the

analysis we treated h̃s
q and h̃

s(2)
q as temperature- and

q-dependent fit parameters. However, contrary to h̃s
q, the

resulting temperature dependence of h̃
s(2)
q turned out to be

rather irregular and sometimes even opposite to the theo-
retical expectation, especially at low temperatures. From
equation (2) one expects the significance of the corrections
to diminish as Tc is approached, whereas Figures 3 and 4
show that they become more important with decreasing
temperature. This discrepancy could have two reasons.

First, h̃
s(2)
q is about 2 to 3 orders of magnitude smaller

than h̃s
q (which itself is of the order 10−2). Therefore it

is numerically difficult to extract reliable values from the
fits, especially at large q-values, where f sc

q is small. Sec-
ond, the idealized MCT is only supposed to work in a
temperature interval which is close, but not too close to
Tc. In the immediate vicinity of Tc, ergodicity restoring
hopping processes [6,18] start to compete with the ergod-
icity breaking cage effect that is treated by the idealized
MCT. Qualitatively, the main influence of the hopping
processes is to accelerate the decay of the correlators at
late times. Since the uncorrected idealized fits for small q
lie above the simulation data, the addition of corrections
to the von-Schweidler law could partly mimic the effect
of hopping. This ambiguity can complicate the analysis.
Presumably, it would have been better to impose the the-

oretical temperature dependence on h
s(2)
q , and to adjust

only the variation with q.
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0.450 ± 0.005.

0 5 10 15 20
q

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0
f qsc

, h
qs t 0a

fq

sc 
hq

st0

a

3 6.9 9.5

Fig. 6. q-dependence of the nonergodicity parameter f sc
q and
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a
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scopic matching time t0 cannot be separated in the fit). The
solid curves are the Gaussian approximations of equation (6).
The fit interval for f sc

q was 1 ≤ q ≤ 8. The result of this fit was
used to estimate hmsd from the behavior of hs

q at small q.

Despite this proviso, the idealized analysis should yield
reliable results on the β-time scale around τco, where
neither corrections, nor hopping processes are dominant.
From the fits one can extract the q-dependences of f sc

q and
hs
q, and the critical temperature. These results are shown

in Figures 5 and 6. Figure 5 plots t−2a
ε and (h̃s

q)
2 versus

temperature. The theoretically predicted linear behavior
(see Eq. (3)) is nicely confirmed by the data. A linear re-
gression yields Tc ' 0.451 for tε. Similar estimates are
obtained for h̃s

q: Tc ' 0.451 (q = 3), Tc ' 0.448 (q = 6.9),
and Tc ' 0.448 (q = 9.5). Combining these results we find
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Tc = 0.450± 0.005, which implies 0.04 ≤ (T − Tc)/Tc ≤
0.15 for the reduced distance to the critical point in our
model. Although (T − Tc)/Tc = 0.04 corresponds to the
upper limit, where some of the asymptotic laws begin to
be detectable in theoretical calculations for hard spheres
[14,15], similar reduced distances are not unusual in prac-
tical applications of MCT (see Refs. [32,33], for instance).

Figure 6 shows the q-dependences of f sc
q and hs

q, to-
gether with the Gaussian approximations,

f sc
q ≈ exp[−q2r2

sc] and hs
q ≈ hmsdq

2 exp[−q2r2
sc], (6)

which are supposed to hold for small q [14]. As in other ex-
perimental [34] and theoretical studies [31,35], the noner-
godicity parameter of our model monotonously decreases
with increasing q, whereas the critical amplitude passes
through a maximum between the maximum and the first
minimum of S(q). The Gaussian approximations pro-
vide reasonable descriptions for the initial behavior of
both f sc

q and hs
q. The description extends farther for f sc

q

(q ≤ 10) than for hs
q (q ≤ 4), which is qualitatively com-

parable to the theoretical results for hard spheres [14,
36]. From the fits one obtains: rsc = 0.095 ± 0.005 and
hmsdt

a
0 = 0.0045± 0.0010. Both parameters enter the first

two terms of the short-time expansion for the α-process
of the (monomer) mean-square displacement, which corre-
sponds to the von-Schweidler law in reciprocal space [14].
The mean-square displacement will be briefly discussed in
the next section and more extensively together with re-
lated quantities in reference [37].

3.2 α-relaxation regime

The final structural decay from the nonergodicity param-
eter to zero is called α-relaxation regime. For this regime
the idealized MCT makes the following predictions [14,
15,36]. First, the α-process asymptotically obeys a time-
temperature superposition principle,

φs
q(t) = φ̃s

q(t/τ), (7)

i.e., all correlators, measured for one q-value at different
temperatures, should collapse onto a master curve if time
is rescaled by τ (see Eq. (4)). Second, the short-time ex-
pansion of equation (7) coincides with the long-time be-
havior of the β-process, i.e., with the von-Schweidler law,
φs
q(t) = f sc

q −h
s
qB(t/τ)b (B = 0.476 for our model). Third,

the leading-order corrections to equation (7) extend the
description beyond f sc

q at short rescaled times. They are

given by δφ̃s
q(t/τ) = hs

q(B1/B)|ε|(τ/t)b (with B1 = 0.185),
and are identical to the corrections of the β-correlator for
t� tε. Forth, in the limit of large q the α master curve is
given by a Kohlrausch function [38]

φs
q(t) = fK

q exp

[
−

(
t

τK
q

)βK
]

(8)

with fK
q = f sc

q , βK = b, and τK
q (T ) = τ̂K

q τ(T ), where τ̂K
q ∝

q−1/b. On the other hand, it is found that equation (8)
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Fig. 7. α-scaling plot of φs
q(t) versus t/τq for q = 6.9. Nine

different temperatures are shown: T = 0.46, 0.47, 0.48, 0.49,
0.5,0.52,0.55,0.6,0.7 (from left to right). The scaling time τq
was defined by φs

q(τq) = 0.3 (lower horizontal dashed line).
Note that the scaling extends to shorter rescaled times with
decreasing temperature if T ≥ 0.48. For T = 0.46 (dashed
line) this trend is violated (see text for further discussion).

represents a good approximation for the α master function
even if q is small [36].

Figure 7 shows a test of these predictions for q = 6.9.
A scaling time τq was defined by φs

q(τq) = 0.3. This is
legitimate because any time belonging to the α-regime is
expected to exhibit asymptotically the same temperature
dependence, i.e., τq ∼ τ , due to time-temperature super-
position. The figure shows that the time-temperature su-
perposition property is borne out by the simulation data
for T ≤ 0.7. Therefore, it already starts a higher tem-
peratures compared to the β-scaling. Theoretically, such
a difference can be rationalized by the fact that the cor-
rections to the β master function are of order ε1/2, and
thus larger than those of equation (7), which are of or-
der ε only. At T = 0.7 the α-scaling is realized for about
the last 40% of the decay. With decreasing temperature
it extends to smaller rescaled times in such a way that it
progressively adjusts to the von-Schweidler law, and de-
viations at shorter times are quantitatively described by
the β-correlator.

This qualitative trend persists as long as T ≥ 0.47.
However, for T = 0.46 the rescaled correlator moves away
from the von-Schweidler asymptote instead of approach-
ing it further. This is in contrast to the theoretical expec-
tation. Although we could not propagate the chain over
several times the radius of gyration, we believe that the
melt is equilibrated over the distances probed by q = 6.9
so that the deviation is presumably not a residual nonequi-
librium effect. A possible explanation is that the melt at
T = 0.46 ((T − Tc)/Tc = 0.02̄) is already so close to Tc

that the influence of ergodicity restoring processes starts
to be felt. These processes change the shape of the corre-
lator in the von-Schweidler regime and prevent the strong
increase of the α-relaxation time according to equation (4)
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Fig. 8. Plot of τ
−1/γ
q versus temperature for q = 3 (≈ size

of a chain), q = 6.9 (≈ maximum of S(q)), and q = 9.5 (≈
first minimum of S(q)). The exponent γ was taken from the
β-analysis (γ = 2.09). The straight lines are fit results for the
interval 0.47 ≤ T ≤ 0.52. The intersections of the fits with the
zero-line are estimates for Tc: Tc = 0.446 (q = 3), Tc = 0.449
(q = 6.9), Tc = 0.452 (q = 3). The inset shows the same plot
for the diffusion constant. Here the fit result for the critical
temperature is significantly smaller, i.e., Tc = 0.438.

from continuing [18]. It is therefore possible that a corre-
lator falls above the idealized α master curve when trying
to rescale it by a relaxation time which is too small. How-
ever, a comparable overshoot was not observed in a re-
cent MD-simulation of diatomic molecules [31], although
the temperature dependence of the relaxation times devi-
ated markedly from the idealized prediction at the lowest
temperatures studied. Nevertheless, the low temperature
curves start crowding in the plateau regime and no longer
expand along the von-Schweidler asymptote for shorter
rescaled times. Therefore, it is conceivable that an over-
shoot could also occur in this model at still lower temper-
atures.

Figure 8 shows that the relaxation time at T = 0.46 is
indeed smaller than expected from the mode-coupling fit.

The figure depicts a plot of τ
−1/γ
q and D1/γ (D: diffusion

coefficient of a chain) versus T , using the best estimate
for γ from the β-analysis (γ = 2.09). In the tempera-
ture interval, in which the idealized analysis was possible
(0.47 ≤ T ≤ 0.52; at T = 0.46 the β-analysis with the pa-
rameters quoted above did not yield acceptable results),
the simulation results lie on straight lines, as predicted
by MCT. However, for T = 0.46, the relaxation times are
too small (no reliable estimate of the diffusion coefficient
could be obtained after 5× 107 MD-steps). The same ob-
servations were also made in reference [31] for compara-
ble reduced distances to the critical point. Therefore the
interval 0.47 ≤ T ≤ 0.52 was used to obtain further es-
timates for Tc. For τq this yields Tc ≈ 0.446 for q = 3,
Tc ≈ 0.449 for q = 6.9, Tc ≈ 0.452 for q = 9.5, and for D,
Tc ≈ 0.438. Whereas the variation of Tc for τq, albeit de-

creasing systematically with decreasing q, is compatible,
within the error bars, with Tc = 0.450 from the β-analysis,
the result from D is too small. Barring the problem that
the diffusion coefficient is hard to determine accurately at
low temperatures (i.e., for T ≤ 0.47), the high temper-
ature behavior (i.e., 0.48 ≤ T ≤ 0.52) suggests that the
disparity in the Tc-estimates is significant. Such a find-
ing is not uncommon. Similar observations were made in
MD-simulations of a water model [39] and of a binary
Lennard-Jones mixture [33]. Whereas the difference in Tc

in the water simulation was small and could be attributed
to numerical uncertainties, a much larger reduction was
found for the binary mixture. On the other hand, an un-
constrained fit yielded a critical temperature which was
compatible with the estimates from coherent and inco-
herent scattering, but γ was in turn significantly smaller
than that from the β-analysis. The same result was also
obtained in MD-simulations of diatomic molecules [31,40]
and for our model [30].

In experiments and simulations it is generally found
that the Kohlrausch function represents a very good fit
formula for the major part of the α-relaxation. Only
at early times deviations (can) become visible. Mode-
coupling theory interpretes these deviations as a signa-
ture of the von-Schweidler law, since it concatenates the
β- with the α-process, and βq 6= b in general [36]. There-
fore, when applying the Kohlrausch function, the problem
arises that the late β-process interferes with the fit [41],
and additionally, that the fit parameters sensitively de-
pend on the size of the fit interval (for a discussion of
this problem see Refs. [42,43], for instance). To lessen this
problem two procedures are often used. On the one hand,
one can fit the late-time decay of the α master function
by taking into account that the short-time bound of the
fit interval should not overlap too much with the von-
Schweidler regime. This procedure has been used in ref-
erences [31,33], for instance. On the other hand, one can
work with so-called α-β-fits, in which equation (2) (with-
out corrections) and equation (7) are superimposed. Ex-
cept for hard-sphere colloidal systems, where it is possible
to calculate the master function numerically [36,44], equa-
tion (7) is usually replaced by equation (8). The superpo-
sition requires fK

q = f sc
q , and the von-Schweidler law to

be subtracted from the β-correlator because it is already
approximated by the Kohlrausch function [45,46] (for an
alternative procedure see [32]).

A variant of the latter approach was applied in this
simulation. We only worked with the Kohlrausch function,
but fixed the amplitude by fK

q = f sc
q . Then we tried to

optimize the stretching exponent βK (the time scale is al-
ready given by φs

q(τ
K
q ) = f sc

q e−1). The results are still very
sensitive to the choice of the fit interval. An example is
given in Figure 9. It shows the q-dependence of the stretch-
ing exponent βK. The percentages specify the portion of
the decay from f sc

q to (about) 0, which is included in the
fit (i.e., “40%” means the range 0.02 ≤ φs

q(t)/f
sc
q ≤ 0.4).

At large q the nonergodicity parameter is so small that
statistical noise of the data considerably influences the
results. The βK-values for the various fit intervals then
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Fig. 9. Kohlrausch stretching exponent βK (see Eq. (8)) as
a function of q for three different choices of the fit interval
0.02 ≤ φs

q(t)/f
sc
q ≤ X for X = 0.4, 0.7 and 0.85. The thick

horizontal line indicates the von-Schweidler exponent b = 0.75.
In addition, three different q-values are highlighted by vertical
dashed lines: q = 2π/Rg ≈ 4.35 (Rg =radius of gyration),
q = 6.9 (≈ maximum of S(q)), and q = 9.5 (≈ first minimum
of S(q)).

strongly splay out, leading to a difference of about 15%
at q = 19. With decreasing q the curves approach one
another and fluctuate around βK ≈ b = 0.75, except for
the smallest q-values, q = 1, 2, where βK lies between 0.65
and 0.7.

This behavior suggests that it should be possible to
find a fit interval for q > 2, where the Kohlrausch func-
tion with fK

q = f sc
q and βK = b provides a good descrip-

tion of the α-process. Figure 10 shows a comparison be-
tween φs

q(t) and such Kohlrausch functions for a selection
of q-values, ranging from q = 1 to q = 14, at T = 0.48.
One can clearly see that the expectation βK = b is well
borne out if q ≥ 3, but that smaller stretching exponents
are required for q < 3.

In addition, the data exhibit a small bump at about
t = 3 for all wave vectors. This bump gradually devel-
ops at low temperatures (T < 0.52), but is hard to see
in the presentation of Figures 2 or 3. A similar feature
was also observed in other simulations of fragile glass for-
mers, for instance, for orthoterphenyl [42] or for a binary
Lennard-Jones mixture [35], and is much more pronounced
for strong glasses, like silica [47]. Usually, the bump is at-
tributed to a finite size effect. Due to nonlinear coupling
with other wave vectors a sound wave, which propagates
through the simulation box, leaves it on one side, and
immediately reenters the box on the other side because
of periodic boundary conditions, could generate a distur-
bance at a time t ≈ L/c, where L is the linear dimension
of the box and c is the sound velocity. Using L = 10.5, and
estimating the sound velocity as3 c ≈ 7, we find t ≈ 1.5,
which is close to the position of the bump.

3 The sound velocity is estimated from c = (cp/cVρκT)1/2 by
taking into account S(q → 0) = TρκT and the thermodynamic

10
2

10
1

10
0

10
1

10
2

10
3

10
4

t

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

φ qs (t
)

q=14

q=2

q=1

tε

Fig. 10. φs
q(t) and Kohlrausch functions at T = 0.48. Solid

lines are the simulation data for nine different q-values: q =
1, 2, 3, 4, 6, 8, 10, 12, 14 (from right to left). For q ≥ 2, the
Kohlrausch parameters are given by: fK

q = f sc
q , βK = b = 0.75,

and τK
q from φs

q(τ
K
q ) = f sc

q e−1. These choices provide a good
description of the α-decay, as long as q > 2. For q ≤ 2, de-
viations gradually develop. The stretching becomes more pro-
nounced, leading to the following parameters at q = 1: fK

q =
f sc
q , βK = 0.656, and τK

q = 24595. In addition, two vertical
lines are shown. The thin dashed line is tε(T = 0.48) = 4.933,
whereas the thick dashed line indicates the lower time value
(t = 500), above which the monomer mean-square displace-
ment exhibits a t0.65-behavior (see Fig. 11).

Two comments with respect to the Kohlrausch fits
have to be made. First, the equality βK = b starts to
work at q-values which are about a factor of 2 smaller
than the maximum position of S(q). Such a behavior has
neither been observed in experiments [45,46] nor in simu-
lations [33] of nonpolymeric glass formers. Theoretically,
one expects βK = b to become valid if q → ∞, and nu-
merical calculations for hard spheres indicate that this
limit is approximately realized only for q-values which
are 5–6 times larger than the maximum position of S(q)
[36,38]. Therefore the present finding seems to be a spe-
cial property of the model under consideration, although
neutron-scattering experiments for polybutadiene [16,48]
and other polyolefines [49,50] also suggest βK = const
(and perhaps ≈ b for polybutadiene [16]) for q-values that
lie around the maximum of S(q) (typically, 2π/Rg �

0.2 ≤ q ≤ 5 Å−1).

The second comment concerns the drop of βK for small
q. Usually, one expects βK to increase monotonously to 1
as q → 0 because the system becomes freely diffusive on
this length scale. This behavior is well borne out in the-
oretical calculations for hard spheres [36] and simulations
of simple liquids [35]. We believe that the difference ob-
served here is related to the polymeric character of our
model because q ≤ 2 probes the length scale of a chain.

relation between the specific heats, cp and cV, and the thermal
expansion coefficient.
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Fig. 11. Panel (a) shows a comparison between φs
q(t) (sym-

bols) and the Gaussian approximation equation (9) (solid lines)
for five different q-values at T = 0.48. The q-values smaller
than 3 probe the size of a chain (see Fig. 1). For q = 1
(< 2π/Re) the agreement is quantitative. Panel (b) shows the
mean-square displacement, g0(t), of all monomers (solid line)
at T = 0.48. The initial slope is g0(t) = 3T t2 = 1.44t2 (dashed
line). The dotted line is a fit by equation (10) with 6r2

sc = 0.054
(dashed horizontal line). In addition, a power law, g0(t) ∼ tx0

with x0 = 0.65, is indicated by another dashed line. To deter-
mine x0, only the simulation data larger than R2

g = 2.09 were
used. Nevertheless, the power law extends by about one decade
to smaller times. The dash-dotted line shows the expected long
time behavior g0(t) = 6Dt. The diffusion coefficient was deter-
mined from the mean-square displacement of a chain, which
reaches the diffusive limit earlier than g0(t) [37]. In both pan-
els three vertical dashed lines are shown. From left to right,
the first (t = 0.3) indicates the approximate time, when the
Gaussian approximation stops working, if q ≥ 5, the second is
the β-time scale tε(T = 0.48) = 4.933, and the last marks the
onset of the t0.65 power law.

For these q-values the Gaussian approximation,

φs
q(t) = exp

[
−

1

6
q2g0(t)

]
, (9)

represents a (very) good description of the data (see
Fig. 11) so that one can interprete the decay of φs

q(t) in

terms of the monomer mean-square displacement4 g0(t).
At early times (t ≤ 0.03) the mean-square displacement is
purely ballistic, i.e., g0(t) = 3T t2 = 1.44t2 (T = 0.48), be-
fore it crosses over to a plateau regime at about t ≈ 0.3.
At this time, equation (9) also ceases to be a good ap-
proximation for φs

q(t), if q is too large (i.e., for q ≥ 5).
The leveling-off of g0 reflects the temporary localization
of the monomers in their cages. It is the counterpart of the
β-relaxation in real space, and can be described by [14]

g0(t) ' 6r2
sc − 6hmsd

[
t0

tε

]a
g(t/tε)− 6hmsdCa

[
t0

t

]2a

− 6hmsdB
2Cb

[
t0

tε

]2a [
t

tε

]2b

, (10)

where Ca and Cb are constants, which result from the cor-
rections to the critical decay and to the von-Schweidler law
in the limit q → 0, respectively. For hard spheres, one ex-
pects Ca < 0 and Cb < 0 [14,15]. Figure 11b includes a
fit of equation (10) to g0(t). Please note that r2

sc = 0.009
(rsc ' 0.095 corresponds to the Lindemann criterion of
melting), hmsdt

a
0 = 0.0045, tε = 4.933, B = 0.476, and

g(t̂) are taken from the β-analysis. The only adjustable
parameters are Cat

a
0 and Cbt

a
0. The fit yields the reason-

able values Cat
a
0 ≈ −0.3 and Cbt

a
0 ≈ −0.25. On the other

hand, it is also possible to fit g0(t) by the leading-order
ansatz g0(t) = 6r2

sc + Atb, where r2
sc and A have to be

adjusted [51] (see also Ref. [33] for another application
to simple liquids). Although such a fit extends the de-
scription of equation (10) at late times by approximately
one decade, it requires rsc ≈ 0.087 and A ≈ 3.68× 10−3.
These values are considerably different from those of the
β-analysis. Therefore, the first approach should be pre-
ferred.

Equation (10) describes the simulation data from t ≈
0.5 to about t ≈ 100, i.e., up to the initial relaxation
of a monomer out of its cage. During the β- and the
early α-relaxation a monomer hardly feels the bonds to
its neighbors along the chain. The mean-square displace-
ment is of the order 10−2−10−1 of the monomer diameter.
Therefore the monomer behaves like a particle in a simple
liquid. For larger displacements chain connectivity starts
to influence the monomer dynamics, and finally becomes
dominant. Whereas the von-Schweidler behavior crosses
over to free diffusion in simple liquids [33], a further sub-
diffusive regime, g0(t) ∼ tx0 (x0 ≈ 0.65), intervenes for
our model if t ≥ 500. Such subdiffusive displacements
are well-known in polymer simulations of nonentangled

4 All monomers are included in g0(t), as it was the case in
the calculation of φs

q(t). For a further discussion of this and
other mean-square displacements see reference [37].
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Fig. 12. q-dependence of the α-relaxation time τq, defined

by φs
q(τq) = f sc

q /2. The figure shows τ̂qt
−a/b
0 = τq/t

1+a/b
ε

(see Eq. (4)) for three different temperatures from the in-
terval, where the β-analysis could be done. Thick solid lines
indicate different asymptotic behavior. The initial decrease

of τ̂qt
−a/b
0 is steeper than q−2, the expected dependence for

free diffusion, but compatible with q−2/βK = q−3.05 (βK =

0.656) (see Eq. (11)). For larger q, τ̂qt
−a/b
0 crosses over to the

mode-coupling result, equation (12). The filled points show
(f sc
q /Bh

s
q)

1/b, whereas the solid line is the asymptotic limit,

∼ q−1/b, for q →∞.

chains [52], and usually interpreted as a crossover between
a t1/2-behavior – the prediction of the Rouse model [53]
for 1 � g0(t) � R2

e – and free diffusion. A comparison
of Figures 10 and 11 shows that the subdiffusive displace-
ment occurs in the same time regime, where the stretched
exponential with βK = 0.656 fits φs

q(t) for q = 1. There-
fore, we suggest that the drop of βK is a polymer specific
effect, related to chain connectivity, which becomes visible
if q probes the length scales between the monomer diam-
eter (= 1 in our units) and the end-to-end distance Re.
On the other hand, if q � 2π/Re, the monomer displace-
ment has to become diffusive, and so βK should approach
1, as in simple liquids. Therefore we expect βK to exhibit
a minimum for our model at small q.

Finally, Figure 12 shows the q-dependence of the α-
relaxation time τq. Here, τq was defined by φs

q(τq) = f sc
q /2

instead of by τK
q because τK

q is larger than the simu-
lated times if q < 2. However, for q-values, where both
times are available, we checked that they qualitatively

yield the same result. In addition, τq was divided by t
1+a/b
ε

to eliminate the critical dependence on Tc (see Eq. (4)).

Asymptotically, the resulting quantity, τ̃q = τ̂qt
−a/b
0 (see

Eq. (8)), should be temperature independent. The figure
shows that the division does not completely remove the
temperature dependence. For q = 1 the relaxation times
at T = 0.47 and T = 0.52 are about a factor of 2 dif-
ferent, with τ̃q(T = 0.47) < τ̃q(T = 0.52), whereas both
τ̃q’s first approach, and then cross one another around
the first peak of the static structure factor (q ' 6.9), be-

fore splaying out again. At q = 19 there is again about
a factor of 2 between T = 0.47 and T = 0.52, but now
τ̃q(T = 0.47) > τ̃q(T = 0.52). However, the absolute val-
ues of τ̃q are of the order 10−1 for q = 19, and thus 1–2

orders of magnitude smaller than t
1+a/b
ε , while they are

comparable to t
1+a/b
ε at q = 1. Therefore the difference

at small q seems to be more important. It could again
indicate that the relaxation times on the largest length
scales do not increase as rapidly as expected from ideal-
ized MCT, an observation, which we have already made
for the diffusion coefficient (see Fig. 8 and Ref. [30] for
further discussion of this point). On the other hand, it
is not clear how significant the found deviations are at
all, since the dominant temperature dependence has been

taken into account by t
1+a/b
ε , and an additional smooth

temperature dependence is expected, if T is not very close
to Tc (see Fig. 7 of Ref. [15], for instance).

The q-dependence of the α-relaxation time can be
roughly divided into two regions. For q < 2 Figures 10
and 11 showed that the Gaussian approximation, equa-
tion (9), and the Kohlrausch function with βK = 0.656
describe the α-relaxation of φs

q(t) well. In the α-regime one
can therefore approximately equate equations (8, 9). Fur-
thermore, if one assumes a power law for the q-dependence
of τq, one obtains

τq ∼ q
−2/βK = q−3.05 for q < 2. (11)

Figure 12 shows that this estimate reasonably agrees with
the initial behavior of τq. Equation (11) was suggested for
the first time in reference [54], and has been used since
then in the analysis of several other neutron-scattering
experiments of glass-forming polymers [16,49], if q2g0(t) is
sufficiently small to warrant the Gaussian approximation
(see also Ref. [48] for a critical discussion of this issue). If
q ≥ 5, τ̃q is indicative of another power-law behavior that
is compatible with the mode-coupling prediction [36,38],

τ̂q =

[
f sc
q

Bhs
q

]1/b
q→∞
−→ q−1/b, (12)

which is expected to hold, if βK = b. A similar observation
was made in neutron-scattering experiments of orthoter-
phenyl [34].

4 Conclusions

This paper presents results of a molecular-dynamics simu-
lations for a simple model of a glassy, nonentangled poly-
mer melt. The discussion focuses on the monomer dynam-
ics above Tc, as monitored by the incoherent intermediate
scattering function φs

q(t) and the mean-square displace-
ment. These functions do not distinguish between bonded
and nonbonded monomers so that it is a priori not clear
how the polymeric character influences φs

q(t) in the su-
percooled state. From the analysis the following picture
emerges.
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1. At very early times the motion of a monomer is purely
ballistic, i.e., the mean-square displacement scales as
∼ t2.

2. At later times, the ballistic motion slows down be-
cause the monomer feels the confinement imposed by
its nearest neighbors. The monomer becomes almost
localized, and the period of this localization extends
over about two decades in time in the narrow temper-
ature interval 0.47 ≤ T ≤ 0.52. “Localization” in this
context means that the mean-square displacement re-
mains close to rsc ≈ 0.095, i.e., to a displacement that
is about 10% of the monomer diameter. This is the
regime of the β-relaxation, which deals with the ap-
proach towards and leaving of the plateau value rsc
(see Fig. 11b). In this sense, rsc can be interpreted as
a dynamic measure of the size of the cage. Motions on
this length scale are so small that they are hardly af-
fected by the polymeric character, i.e., by the nature of
the glass former. This is presumably the reason, why
mode-coupling theory, a theory developed for simple
liquids, can give a reasonable explanation for the dy-
namics of structurally much more complicated systems
in the β-regime.

3. Concerning the comparison with the idealized MCT in
the β-regime, the simulation provides evidence for the
space-time factorization theorem with temperature in-
dependent f sc

q , hs
q, and λ, as long as 0.47 ≤ T ≤ 0.52.

In this temperature region, the β-relaxation time ex-
hibits the predicted power law, yielding a critical tem-
perature of Tc ' 0.45, and the q-dependences of f sc

q

and hs
q are in qualitative agreement with calculations

for hard spheres. For T < 0.47, deviations from the
idealized behavior are observed, which can be inter-
preted in terms of ergodicity restoring hopping pro-
cesses. We have not attempted an extended MCT-
analysis because data for only one temperature be-
low T = 0.47 had been simulated. However, we can
roughly estimate an upper bound of the hopping pa-
rameter δ for our model. Using δt0 = (t0/tε)

1+2a [18],
tε(T = 0.47) = 8.75, and assuming t0 ≈ 0.3 (due to
Fig. 11), we obtain δt0 ≈ 3 × 10−3, which would be
larger than experimental values at similar distances
from the critical point [32,43].

4. When the mean-square displacement becomes larger
than rsc, the monomer begins to leave its cage, and
the temporarily frozen structure “melts”. The initial
stage of this “melting”, i.e., of the α-process, can be
described by the von-Schweidler law. But for larger
times, polymer specific properties start dominating
the dynamics. For instance, the mean-square displace-
ment exhibits a subdiffusive behavior between the von-
Schweidler law and free diffusion due to chain con-
nectivity. The exponent of the corresponding power
law is typical of the short chains studied. It also
determines the Kohlrausch stretching exponent for
small wave-vectors, where the Gaussian approxima-
tion holds. Qualitatively, this difference between α-
and β-processes is expected by mode-coupling theory
because the space-time factorization of the β-regime,

which implies the same dynamics on all length scale, is
no longer valid in the late α-regime. However, the the-
ory still predicts that the diffusion coefficient and the
α-relaxation time τq should exhibit the same tempera-
ture dependence. In this respect, we find deviations be-
tween theory and simulation. The diffusion coefficient
does not decrease as quickly as τq at the maximum
of the structure factor with decreasing temperature.
Somehow the melt stays more mobile on large length
scales than on local ones. On the other hand, we find
evidence for the time-temperature superposition prin-
ciple for the α-process, if T ≥ 0.47.

5. The wave-vector dependence of the α-relaxation time
consists of two regimes. For small q, where the Gaus-
sian approximation holds, we find a q−2/βK-behavior,
as in some neutron-scattering experiments [16,49],
which crosses over to a q−1/b-behavior for q ≥ 5. The
latter power law is a MCT-prediction for q-values much
larger than the maximum of S(q). Why this asymp-
totic behavior can already be observed for rather small
q in the present model, is not clear.

In summary, the dynamics of our model in the super-
cooled state can be understood as an interplay of mode-
coupling and polymer specific effects. The “caging” of
a monomer by its neighbors leads to a temporary trap-
ping of the monomers and to a concomitant slowing down
of the structural relaxation, as in simple liquids. This
cage effect is dominant, as long as the monomer displace-
ment is small (i.e., much smaller than the diameter of a
monomer). The polymeric character of the model only de-
termines the nonuniversal parameters of MCT. However,
if a monomer gradually leaves its cage, chain connectiv-
ity becomes more and more influential. For the present
model of short nonentangled chains, it leads to a subdif-
fusive Rouse-like displacement. The subdiffusive behavior
interferes with the late-β/early-α dynamics and limits the
von-Schweidler regime to a range, which is much smaller
than in simple Lennard-Jones liquids, before free diffusion
sets in.
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5. W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).
6. W. Götze, in Liquids, Freezing, the Glass Transition,

edited by J.P. Hansen, D. Levesque, J. Zinn-Justin (North-
Holland, Amsterdam, 1990), Part 1, pp. 287–503.
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in Spin Glasses, Random Fields, edited by A. Young
(World Scientific, Singapore, 1998), pp. 161–223.

28. C. Bennemann, W. Paul, K. Binder, B. Dünweg, Phys.
Rev. E 57, 843 (1997).

29. K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990).
30. C. Bennemann, W. Paul, J. Baschnagel, K. Binder, J.

Phys.-Cond. Matter 11, 2179 (1999).
31. S. Kämmerer, W. Kob, R. Schilling, Phys. Rev. E 58, 2131

(1998).
32. H. Z. Cummins, G. Li, W. Du, Y.H. Hwang, G.Q. Shen,

Prog. Theo. Phys. Suppl. 126, 21 (1997).
33. W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995).
34. W. Petry, E. Bartsch, F. Fujara, M. Kiebel, H. Sillescu, B.

Farago, Z. Phys. B 83, 175 (1991).
35. W. Kob, H.C. Andersen, Phys. Rev. E 52, 4134 (1995).
36. M. Fuchs, I. Hofacker, A. Latz, Phys. Rev. A 45, 898

(1992).
37. C. Bennemann, J. Baschnagel, W. Paul, K. Binder, Mol-

ecular-Dynamics Simulation of a Glassy Polymer Melt:
Rouse Modes, Cage-Effect, Comp. Theo. Poly. Sci. (sub-
mitted), cond-mat/9902358.

38. M. Fuchs, J. Non-Cryst. Solids 172–174, 241 (1994).
39. F. Sciortino, L. Fabian, S.-H. Chen, P. Tartaglia, Phys.

Rev. E 56, 5397 (1997).
40. S. Kämmerer, W. Kob, R. Schilling, Phys. Rev. E 56, 5450

(1998).
41. M. Fuchs, W. Götze, W. Hildebrand, A. Latz, Z. Phys. B

87, 43 (1992).
42. L.J. Lewis, G. Wahnström, Phys. Rev. E 50, 3865 (1994).
43. H.Z. Cummins, W.M. Du, M. Fuchs, W. Götze, S. Hilde-

brand, A. Latz, G. Li, N.J. Tao, Phys. Rev. E 47, 4223
(1993).

44. W. van Megen, S.M. Underwood, Phys. Rev. E 49, 4206
(1994).

45. M. Fuchs, H.Z. Cummins, W.M. Du, W. Götze, A. Latz,
G. Li, N.J. Tao, Philos. Mag. B 71, 771 (1995).

46. E. Bartsch, J. Non-Cryst. Solids 193, 384 (1995).
47. J. Horbach, W. Kob, K. Binder, C.A. Angell, Phys. Rev.

E 54, R5897 (1996).
48. R. Zorn, Phys. Rev. B 55, 6249 (1997).
49. J. Colmenero, Macromol. Symp. 94, 105 (1995).
50. J. Colmenero, Physica A 201, 38 (1993).
51. K. Binder, C. Bennemann, J. Baschnagel, W. Paul, Ano-

malous diffusion of polymers in supercooled melts near the
glass transition, to be published by Springer Verlag, Berlin.

52. K. Binder, W. Paul, J. Polymer Sci. Part B: Polymer
Physics 35, 1 (1997).

53. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics
(Clarendon Press, Oxford, 1986).

54. J. Colmenero, A. Alegria, A. Arbe, B. Frick, Phys. Rev.
Lett. 69, 478 (1992).


